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In this paper we present, among other related results, the following geometrical
characterization of C(K ) and C0(K ) spaces. Let X be a Banach space. Let r(A),
rG(A), and E0(A) denote the Chebyshev radius of A, the Chebyshev radius of A
relative to G, and the set of Chebyshev centers of A, respectively. We prove that X
is isometric to a C(K ) or C0(K ) space if and only if rG(A)=r(A)+dist(E0(A), G) for
every nonempty bounded subset A and nonempty subset G of X. � 2000 Academic Press
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1. INTRODUCTION

We use the following notation and definitions. Let M be a metric space,
A a nonempty bounded subset of M, and G a nonempty subset of M. Let
B(x, r) denote the closed ball of center x # M and radius r. The Chebyshev
radius of A, r(A) is the infimum of all numbers r>0 for which there exists
y # M such that A/B( y, r). Similarly, the relative Chebyshev radius of A
with respect to G, rG(A), is the infimum of all numbers r>0 for which
there exists y # G such that A/B( y, r). The possibly empty set of all points
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y # M for which A�B( y, r(A)) is called the set of Chebyshev centers of A
and is denoted by E0(A). The nonempty set of all points y # M for which
A�B( y, r(A)+=) with =>0 is called the set of =-Chebyshev centers of A
and is denoted by E =(A). Finally, dist(A, G) stands for the infimum of all
numbers d(x, y) where x # A and y # G.

The notation C0(K ) will be used in its standard way, i.e., it will denote
the space of continuous real functions, which vanish at infinity, defined on
a locally compact Hausdorff space K with the usual supremum norm.
When K is considered to be a compact Hausdorff space then we write
C(K ).

In 1975, Smith and Ward [7, Theorem 2.2] proved that rG(A)=r(A)+
dist(E0(A), G) whenever A and G are nonempty subsets of a C(K ) space
with A bounded. The main result of our paper, stated below, completes this
in the sense that it characterizes all Banach spaces for which the above
equation holds.

Theorem. Let X be a Banach space. Then the following assertions are
equivalent:

1. rG(A)=r(A)=dist(E0(A), G) for every nonempty bounded subset A
and nonempty subset G of X.

2. rG(A)=r(A)+lim= � 0 dist(E =(A), G) for every nonempty bounded
subset A and nonempty subset G of X.

3. X is isometric to either a C(K ) space or a C0(K ) space.

The main work is divided into three sections. In Section 2, we recall
some essential results from Banach lattice theory and the Lifschitz modulus
introduced in [8] by two of the present authors, as well as some other
results related to the properties of intersections of balls which were studied
in [5, 6]. In Section 3, we derive the main characterization result of this
work. Finally, in Section 4, we extend the results of Section 3 to incomplete
normed linear spaces and we also obtain some new properties of the
Lifschitz modulus.

2. PREVIOUS RESULTS

In this section we recall some definitions and results that will be needed
throughout our exposition. We refer to [4] for standard definitions and
notations on Banach lattice theory. The next two theorems are due to
Kakutani (see [4] for proofs) and will be used as a final step in our
characterization result.
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Theorem 2.1. If a closed sublattice Y of a space of continuous functions
C(K ) separates the points of K (i.e., for every different t1 and t2 in K there
exists f in Y such that f (t1){ f (t2)) and contains the constant function 1,
then Y=C(K ).

Theorem 2.2. Let Y be a closed linear subspace of a space of continuous
functions C(K ). Let FY denote the collection of al triplets (t1 , t2 , :), with t1 ,
t2 # K and : a real positive number, such that f (t1)=:f (t2) for all f # Y.
Then Y is a sublattice of C(K ) if and only if Y contains the set of all func-
tions f in C(K ) such that f (t1)=:f (t2) for every triplet (t1 , t2 , :) in FY .

The following corollary follows in a direct way from the previous
theorem.

Corollary 2.3. Let Y be a sublattice of a C(K ) such that it separates
the points of K. Then Y is isometric to C0(0), for a certain locally compact
Hausdorff space 0, if and only if

FY=[(t, t, 1) : t # K] _ [(t0 , t0 , :) : t0 # K, : # R+]

for some t0 # K.

In this work we will also deal with properties of intersections of balls.
The following definitions were introduced in [1].

Definition 2.4. A metric space M is said to be hyperconvex if given
any family [x: : : # A] of points of M and any family [r: : : # A] of real
positive numbers satisfying d(x: , x;)�r:+r; for every : and ; # A, it is
the case that �: # A B(x: , r:){<.

In addition, if + is a cardinal number, we will say that a metric space M
is an +-hyperconvex space if the above definition is verified in M whenever
the cardinality of the set of centers [x: : : # A] is strictly less than +. In
case + is the cardinal number of the natural numbers we will say that M
is an +0 -hyperconvex space. M will be said to be an R-+-hyperconvex space
if for every subset A of M with cardinality strictly less than + and for every
r> 1

2 diam(A), the intersection � [B(x, r) : x # A] is nonempty. Finally, to
avoid confusion, it should be noted that (n+1)-hyperconvexity is equiv-
alent to the n.2.I.P. considered in [5] and [6].

The following two results can be found in [6], the second also in [5].

Theorem 2.5. Let X be a Banach space. Then X is +0 -hyperconvex if
and only if X is isometric to a closed sublattice Y of a space of continuous
functions C(K ) which separates the points of K.
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Theorem 2.6. A Banach space is an R-+0 -hyperconvex space if and only
if it is an +0 -hyperconvex space.

Definition 2.7 [8]. Let M be a metric space; then, for every d�0, the
Lifschitz modulus of M on d, }~ M(d ), is the supremum of all the positive
real numbers k such that there exists : # (0, 1) so that for every pair of
points x and y in M, and for every r # R+ there exists a point z in M such
that d(z, y)�: dr and B(x, r) & B( y, kr)�B(z, r).

Lemma 2.8. If M is a nonsingleton metric space, then

max[1, d&1]�}~ M(d )�d+1

for all d�0.

The following result is a minor modification of Theorem 4.2 in [8].

Theorem 2.9. Let A and G be two nonempty subsets of a normed space
X with A nonsingleton and bounded. Then

rG(A)�r(A) }~ X \dr(A, G)
r(A) + ,

where

dr(A, G)={
dist(E 0(A), G), if E 0(A){<

lim
= � 0+

dist(E =(A), G), if E 0(A)=<.

The following lemma is a direct consequence of the triangle inequality.

Lemma 2.10. Let A and G be two nonempty subsets of a metric space M
with A bounded, then rG(A)�r(A)+lim= � 0+ dist(E =(A), G).

Corollary 2.11. Let X be a normed space such that }~ X (d )=d+1 for
all positive d. If A and G are two nonempty subsets of X with A bounded,
then

rG(A)=r(A)+ lim
= � 0+

dist(E =(A), G).

If, in addition, E0(A) is nonempty, then rG(A)=r(A)+dist(E 0(A), G).

The next definition will play a main role in all our exposition.
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Definition 2.12. We shall say that a metric space M is a Smith�Ward
space if

rG(A)=r(A)+ lim
= � 0+

dist(E =(A), G) (2.1)

for each nonempty bounded subset A and each nonempty subset G of M.

Note that whenever E0(A){< in the above definition the fact that
rG(A)=r(A)+dist(E0(A), G) implies (2.1).

3. MAIN RESULTS

Our first result of this section states that hyperconvex metric spaces are
Smith�Ward spaces.

Theorem 3.1. If M is a hyperconvex metric space then }~ M(d )=d+1 for
all positive numbers d, and

rG(A)=r(A)+dist(E0(A), G)

for each nonempty bounded subset A and each nonempty subset G of M.

Proof. In order to prove that }~ M(d )=d+1 it will be enough to prove
that }~ M(d )�k for every k<d+1. So, given k<d+1, we fix :<1 so that
:d+1�k. Then for every v # B(x, r) & B( y, kr) we have d(v, y)�: dr+r
and hence, by the hyperconvexity of M,

B( y, : dr) & \, [B(v, r) : v # B(x, r) & B( y, kr)]+{<.

We get }~ M(d )�k by taking z as any element in this intersection.
From Corollary 2.11 we may conclude that hyperconvex Banach spaces

are Smith�Ward spaces. In order to extend this result to the metric context
we consider M isometrically embedded into l�(I ) for a certain set of
indexes I. Then for every nonempty bounded subset A of M

E =
�(A)$E =

m(A), (3.1)

where the first Chebyshev center is taken with respect to l�(I ) and the
second one with respect to M (note that l� spaces are hyperconvex and
that the Chebyshev radius of a subset of a hyperconvex space is the same
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whatever the hyperconvex space is). It is straightforward to prove that
dist(E =

�(A), G)=dist(E =
M(A), G). Finally, by the hyperconvexity of M,

E0(A)=, [B(x, r$): x # A, r$>r(A)]{<,

so rG(A)=r(A)+dist(E0(A), G), which completes the proof. K

Remark 3.2. Note that the main result of this paper (Theorem 3.11)
shows that the converse of Theorem 3.1 does not hold. Since our main goal
is to characterize Banach spaces which are Smith�Ward spaces, very little
is said about the equivalent problem in the setting of metric spaces.
Nevertheless some information about the metric structure of such spaces is
provided by Corollary 3.5.

One of the main results of this section states that every Smith�Ward
Banach space is an +0 -hyperconvex space. Furthermore the next example
is interesting. We recall a well-known example of a 4-hyperconvex space
which is not 5-hyperconvex (note that it was proved in [6] that every
5-hyperconvex Banach space is +0 -hyperconvex). Consequently, it is a little
surprising that this space is not only a non-Smith�Ward space but also the
value of }~ in this space is the lowest possible (see Lemma 2.8) for all d�3.

Example 3.3. Let X=(R3, & }&1). It is shown in [6] that this space is
4-hyperconvex but not +0 -hyperconvex. Consider the sets A=[(1, 0, 0),
(0, 1, 0), (0, 0, 1)] and G=[(1, 1, 1)]. It is not hard to prove that r(A)=1
and E0(A)=[(0, 0, 0)]. Then

4=r(A)+ lim
= � 0+

dist(E =(A), G)>rG(A)

= lim
= � 0+

dist(E =(A), G)&r(A)=3&1=2.

Therefore this space is not a Smith�Ward space. Moreover, }~ X (d )=d&1
for all d�3. Indeed, for d�3 take x=(0, 0, 0) and y=( d

3 , d
3 , d

3). Then
A�B(x, 1) & B( y, d&1), and if z is such that B(x, 1) & B( y, 2)�B(z, 1)
then z=x.

Theorem 3.4. If X is a Smith�Ward Banach space then it is an
+0 -hyperconvex space.

Proof. By Theorem 2.6 it will be enough to prove that X is an R-+0 -
hyperconvex space. Let [x1 , x2 , ..., xn] be a finite collection of points in X.
Let R=max[&xi&xj& : 1�i, j�n]=&x1&x2&. We fix r= R

2 . Then r is
less than or qual to the Chebyshev radius of [x1 , x2 , ..., xi] for all
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i # [3, ..., n]. As the first step of the proof we take A=[x1 , x2] and
G=[x3]. Then, from the fact that X is a Smith�Ward space,

r[x3]([x1 , x2])=r([x1 , x2])+ lim
= � 0+

dist(E =([x1 , x2]), [x3]).

Hence 2r�r+lim= � 0+ dist(E =([x1 , x2]), [x3]), and

B(x1 , r+=) & B(x2 , r+=) & B(x3 , r+=){<

for every =>0. So, in addition, r([x1 , x2 , x3])=r.
Let A now be [x1 , x2 , x3] and G=[x4]. In a similar way to before we

obtain that

B(x1 , r+=) & B(x2 , r+=) & B(x3 , r+=) & B(x4 , r+=){<

for every =>0 and so r([x1 , x2 , x3 , x4])=r.
We proceed in that way until A=[x1 , x2 , ..., xn&1] and G=[xn]. Then,

by the arbitrariness of =, the desired result follows. K

Corollary 3.5. If M is a Smith�Ward space then it is an R-+0 -hyper-
convex space.

Our next goal is to study which +0 -hyperconvex Banach spaces are
Smith�Ward spaces.

Definition 3.6. Let Y be a sublattice of a C(K ) space; then we call
0Y=[t # K : if y # Y and y(t)=&y& then y=0, and there exists y0 # Y such
that y0(t)>0].

Definition 3.7. Given a Banach space X isometric to a sublattice of a
C(K ) space, we will say that Y is a proper representation of X in C(K ) if
it is a sublattice of C(K ) isometric to X, the topological interior of 0Y is
empty, separates the points of K and if t0 is an element of K for which
every y # Y vanishes, then the singleton [t0] is not an open set in K.

The existence of these proper representations is given by the following
lemma.

Lemma 3.8. If X is a Banach space isometric to a sublattice of a C(K )
space that separates the points of K, then there exists a compact Hausdorff
space K$ such that we can find a proper representation of X in C(K$).
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Proof. Let Y be the sublattice of C(K ) isometric to X given by the
statement. Let us denote by int(0Y) the topological interior of 0Y in K.
Since K is compact, then the set

K$=K"(int(0Y) _ int[t # K : y(t)=0 for all y # Y])

is also a compact set. If we consider the action of restricting each element
of Y to K$ then we obtain an isometry from Y into its image. The image
of Y is the desired proper representation of X in C(K$). K

The following corollary is immediate from Theorem 2.5.

Corollary 3.9. Every +0 -hyperconvex Banach space has a proper
representation in a certain C(K ) space.

The next theorem gives the first characterization for a Banach space to
be a Smith�Ward space.

Theorem 3.10. Let X be a Banach space. Then the following assertions
are equivalent:

(a) }~ X (d )=d+1 for all positive numbers d.

(b) X is a Smith�Ward space.

(c) X is an +0 -hyperconvex space such that if Y is a proper represen-
tation of X then x 7 k is in Y for each positive function x in Y and for each
positive real number k such that

max[&x&&1, min
t # K

x(t)]<k<&x&.

(d) There exists a C(K ) space where X has a proper representation,
and if Y is a proper representation of X in C(K ) then 0Y is the empty set.

(e) There exists a C(K ) space where X has a proper representation,
and if Y is a proper representation of X in C(K ) then x 7 k belongs to Y for
each positive element x in Y and each positive real number k.

Proof. (a) O (b) This implication was already stated in Corollary 2.11.

(b) O (c) Since X is a Smith�Ward Banach space, it is an +0 -hyper-
convex space. So we may fix Y as a proper representation of K in a certain
C(K ) space. Let us denote 0Y simply by 0.

Let x be a positive element of Y. It can be assumed, without loss of
generality, that x is not a constant function (otherwise (c) follows directly
from the linear properties of Y ). Let K0=[t # K : y(t){0 for some y # Y].
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We fix k as in the statement of (c). Then we consider A=B(x, 1) &
B(0, k+1) & Y and G=[0], where 0 stands for the null function. We first
prove that r(A)=1 and rG(A)=k+1. We claim that

(K0"0) & [s # K : x(x)�k]

is nonempty and that for every t in it there exist pt and qt in A such that
pt(t)=x(t)+1 and qt(t)=x(t)&1. In fact, since Y is a proper representa-
tion of X the set [t # K : y(t)=0 for all y # Y] must be empty or singleton.
If it is a singleton, denoted by [t0], then it cannot be an open set. So
0 _ [t0] has an empty interior. Now, since k>mins # K x(s), we may con-
clude that (K0"0) & [s # K : x(s)�k] is nonempty.

Consider a fixed t in (K0"0) & [s # K : x(s)�k]. Since t is in K0"0, there
is a norm one function v in Y such that v(t)=1. Then we fix p=v+x,
q=x&v, and w=(k+1) v. Let p1= p 7 w. By construction p1 #
B(0, k+1) & Y. If we now take p2= p1 6 x, then p2 # B(0, k+1) & B(x, 1)
& Y. Now from the fact that t # [s # K : x(s)�k] it follows that p2(t)=
x(t)+1. Consequently, we can fix p2 as the desired pt .

To define qt , it is enough to take qt=2x& pt . It is straightforward to
prove that qt satisfies the required properties.

Now it is enough to pick up a t # K for which the functions pt and qt

exist to conclude that r(A)=1.
To estimate rG(A) we follow a similar reasoning. First given t in

(K0"0) & [s # K : x(s)�k],

we look for a function ut such that ut(t)=k+1. By similar reasons to those
above this set is also nonempty. Let t be fixed in (K0"0) & [s # K :
x(s)�k]. To define ut we take u in Y attaining its norm, equal to k+1,
at t. Then there exists a function p in Y and belonging to B(x, 1) such that
p(t)=x(t)+1. Now, it is enough to define ut=( p 7 u) 6 x. From the fact
that there is at least one t satisfying the above conditions we finally obtain
rG(A)=k+1. Now (b) implies

lim
= � 0+

dist(E =(A), G)=k. (3.2)

We write K=K+ _ K&, where K&=[t # K : x(t)�k] and K+=[t # K :
x(t)�k]. Since for all t # (K&"0) & K0 there exist pt and qt as above, and
due to the fact that (K&"0) & K0 is dense in K &, we obtain that
|z(t)&x(t)|�= for all t # K& and z # E =(A). Similarly, if t # (K +"0) & K0 ,
then there exists ut in A such that ut(t)=k+1; hence k&z(t)�= for all
t # K+ and z # B(0, k) & E =(A). But from (3.2), it follows that for every
$>0 there exist =<$ and z # Y such that z # B(0, k+$) & E =(A).
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Since K=K& _ K+, we finally get that if z # B(0, k+$) & E =(A) with
=<$ then &z&min[x, k]&�$. The arbitrariness of $ completes the proof.

(c) O (d) Since X is +0-hyperconvex, X has proper representations.
The only thing we must prove is that 0=<. Suppose that t0 is in 0. We
first claim that if p # B+

Y =[x # Y : &x&�1 and x>0], then p(t0)=
mint # K p(t). Otherwise we could take w as the minimum of p and the con-
stant function equal to p(t0), i.e., w= p 7 p(t0), which would contradict (c).

Let p in B+
Y be such that p(t0)>0. There s no restriction in assuming

that the dimension of X is greater than or equal to two (otherwise the
theorem follows trivially), and hence we can find q # Y not a multiple of p.
Then we take a multiple of q, which we will also denote by q, so that there
exists t1 # K with p(t1)=q(t1) while p(t0){q(t0). Now since | p&q| is
positive and belongs to Y, we can define w as a multiple of | p&q| so that
w is in B+

Y . But w(t0)>mint # K w(t)=0, which contradicts our claim and
thus (d) holds.

(d) O (e) X enjoys proper representation by hypothesis. So, let x be
a positive element in Y and k a positive number. If k�&x& then x 7 k is
in Y trivially. Let k # (0, &x&). It is enough to prove that for every =>0
there exists y # Y such that &y&(x 7 k)&�=.

For each t # K we may fix an open neighborhood in the following way.
If x(t)=0 then, from the continuity of x, there exists a neighborhood of t
such that x(s)<= for all s in that neighborhood. For such a t we fix yt=x.
If x(t)>0 then, by (d), there is a positive element yt in Y with norm equal
to k attaining its norm at t. Thus there is a neighborhood of t such that
0<k& yt(s)<= for all s in that neighborhood. Consequently, we have an
open covering of K. We consider a finite subcovering and denote by t i the
elements determining the neighborhoods of the subcovering. Let y=
x7 ( yt1

6 } } } 6 ytk
). Now the proof is complete since either y(s)=x(s),

in which case y(s) and (x 7 k)(s) are both in (0, =), or y(s)=�k
i=1 yti

(s),
in which case y(s) # (k&=, k) and x(s) # ( y(s), k).

(e) O (a) Let us fix d>0. We need to prove that }~ X (d )�k whenever
1<k<d+1. Since the value of the modulus is invariant under isometries
we will calculate it over a proper representation Y of X instead of over X.

Consider x and y as two elements of Y. Without loss of generality we can
take y to be the null element of Y. Let zx=((k&1) 7 x+)&((k&1) 7
x&). From (e) zx is in Y. But by the construction zx is such that
&zx&0&�k&1, and B(x, 1) & B(0, k)/B(zx , 1). Now, let := k&1

d . Then
0<:<1 and &zx&0&�k&1�:d. This proves that k�}~ X (d ). K

As a consequence of this theorem we obtain our characterization of
C(K ) and C0(K ) spaces.
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Theorem 3.11. A Banach space X is a Smith�Ward space if and only if
it is isometric to a C(K ) or a C0(K ) space.

Proof. Since C(K ) and C0(K ) spaces satisfy the conditions of statement
(e) in the last theorem, all these spaces are Smith�Ward spaces. In order
to proof the reverse implication let us suppose that X is a Smith�Ward
space, and let Y be a proper representation of X. We consider the set H=
[t # K : y(t)=0, for all y # Y]. Then it is clear that H is either empty or
singleton.

Let us first suppose that H is empty. For each t # K we fix xt # Y such
that xt(t)=&xt &=1. Now, following similar reasoning to that in the proof
of (d) implies (e) in the last theorem, we can associate a finite family of
open neighborhoods with a finite number of points ti of K covering K in
such a way that there exist functions xti

satisfying xti
(s)� 1

2 for every s in
the open neighborhood associated with ti . If z=�1�i�n xti

, then z(t)� 1
2

for all t # K. Hence, recalling the last theorem, the constant function equal
to 1

2 is in Y. Now Theorem 2.1 implies that Y is a C(K ) space.
To finish the proof let us suppose that H=[t0]. Following Theorem 2.2,

we denote the set of all triplets determining Y by F. It will be enough to
prove that this is the set of triplets given by Corollary 2.3. Obviously
F$[(t, t, 1) : t # K] _ [(t0 , t0 , :) : :�0]. To obtain the reverse inclusion
we fix a triplet (t1 , t2 , :) such that t1 {t2 . Then we may take x # Y such
that x(t1)>0 and x(t2)�0 (note that, by the properties of Y, : cannot be
equal to 1). Let z=x7 (x(t1)+x(t2))�2. Obviously z is in Y. But if
(t1 , t2 , :) is in F, then z(t1){:z(t2). So (t1 , t2 , :) is not in Y and hence the
proof is complete. K

We conclude this section with the following corollary.

Corollary 3.12. Let X be a Banach space. Then

rG(A)=r(A)+dist(E0(A), G)

for every pair of nonempty subsets A and G of X, with A bounded, if and only
if X is a Smith�Ward space.

Proof. Since the chain of inequalities

rG(A)�r(A)+ lim
= � 0+

dist(E =(A), G)�r(A)+dist(E0(A), G)

always holds, if X is as in the statement then it is a Smith�Ward space.
Conversely, if X is a Smith�Ward space, then, by Theorem 3.11, it is either
a C(K ) or a C0(K ) space. Now it is enough to recall Corollary 2.11 and
the fact, stated in [2], that E0(A) is a nonempty set for every nonempty
bounded subset A of a C(K ) or a C0(K ) space to conclude the proof. K
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4. THE INCOMPLETE CASE

In this section we study the theorems of Section 3 in the context of
incomplete normed linear spaces. If Y is a normed linear space then Y�
stands for the completion of Y. The next lemma follows trivially from the
definition of being a Smith�Ward space:

Lemma 4.1. A normed linear space Y is a Smith�Ward space if and only
if its completion is a Smith�Ward space.

If we recall Theorem 3.10, then we can write:

Lemma 4.2. If Y is a normed linear space, then the following assertions
are equivalent:

(a) Y is a Smith�Ward space.

(b) }~ Y� (d )=d+1 for all positive d.

The next lemma proves that we cannot replace }~ Y� (d ) by }~ Y (d ) in
Lemma 4.2.

Lemma 4.3. Let c0 be the space of all real sequences convergent to 0
endowed with the supremum norm. Consider Y=[x # l1 : x1=�+�

i=2 x i] as a
subspace of c0 with its induced norm. Then the following assertions hold:

(a) Y is dense in c0 . Consequently, since c0 is a C0(K ) space, Y is a
Smith�Ward space.

(b) Y is an +0 -hyperconvex space.

(c) }~ Y (d )=max[1, d&1] for all positive d.

Proof. (a) Given x # c0 and =>0 we look for y # Y such that
&x& y&�=. Let n0 be a natural number such that |xn |� =

2 for every n�n0 .
It is easy to see that we may fix yi in the real interval [& =

2 , =
2] so that there

exists a natural number n1 for which �n0
i=2 x i+�n1

i=n0+1 yi=x1 . Now
defining y by

xi , if 1�i�n0 ,

y={yi , if n0<i�n1 ,

0, if i>n1 ,

the assertion follows.

(b) Let x1, ..., xn be n elements of Y and r1 , ..., rn n positive numbers
such that &xi&x j&�ri+rj for every i, j # [1, ..., n]. We must prove that
�n

i=1 B(xi, ri) & Y{<. Since c0 is +0-hyperconvex, we can fix x # c0
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belonging to �n
i=1 B(x i, ri). From x we construct a sequence y as in (a) but

taking on this occasion n0 such that |x i
j |�ri0

�2 for every i # [1, ..., n] and
j�n0 , where ri0

=min[ri : 1�i�n]. This sequence y will be in the above
intersection.

(c) We fix d # R+ and k>max[d&1, 1]. It is enough to show that
it is possible to find two elements x and y of Y such that for every z in Y
satisfying B( y, k) & B(x, 1)/B(z, 1), it must occur that z=x.

Let n # N be such that d
n�k&1. Then we take

x=\d,
d
n

, (n times),
d
n

, 0, ..., 0, ...+
and y the constant null sequence. Let us suppose that z is an element of Y
satisfying B(0, k) & B(x, 1)/B(z, 1). From the construction (&k, k)$

(xi&1, xi+1) for all i�2. Then for each fixed i�2 we can find a sequence
v of c0 in B(0, k) & B(x, 1) such that vi=x i+1. Then we complete v so as
to be in B(0, k) & B(x, 1) & Y. Hence zi must be greater than or equal to xi

for all i�2. Following similar reasoning we can find a sequence w in
Y & B(0, k) & B(x, 1) such that wi=xi&1 for all i�2. Consequently we get
that xi=zi for all i�2. Finally, since z and x are both in Y, the proof is
complete. K

Corollary 4.4. The Lifschitz modulus }~ is not invariant under comple-
tion.

In order to able to apply results from the above section to the incom-
plete case we need to introduce a new modulus which is slightly different
from the Lifschitz modulus.

Definition 4.5. Let Y be a normed linear space; then, for every d�0,
the incomplete Lifschitz modulus of Y on d, }~ $Y (d ), is the supremum of all
the real positive numbers k such that there exists a number : # (0, 1) so
that for every x and y in Y, and for every = and r # R+ there exists z # Y
such that d(z, y)�: dr and B(x, r) & B( y, kr)�B(z, r+=).

Both moduli are directly related by the following obvious lemma.

Lemma 4.6. If Y is a normed linear space, then max[1, d&1]�
}~ Y (d )�}~ $Y (d )�d+1 for all positive numbers d.

The proof of the following theorem is similar to that of [8,
Theorem 4.2].
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Theorem 4.7. Let A and G be two nonempty subsets of a normed linear
space Y, with A nonsingleton and bounded. Then

rG(A)�r(A) }~ $Y \d $r(A)
r(A) + ,

where d $r(A)=lim= � 0+ dist(E =(A), G).

Proof. Let A and G be as in the statement and denote rG(A) by k. Since
Y is a normed space there is no loss of generality if we assume that
r(A)=1.

Let k<}~ $Y (d $r(A)). Given '>0 we take 0<$�' such that

dist(E 2$(A), G)�d $r(A)(1&'). (4.1)

Since rG(A)=k, we fix y # G such that A�B( y, (1+$) k) and x # E$(A).
Taking the r and = in the definition of }~ $Y as (1+$) and $

1+$ , respectively,
there exists : # (0, 1), which does not depend on $, x, or y, such that there
exists z # Y with the following two properties:

B(x, 1+$) & B( y, (1+$) k)�B \z, (1+$) \1+
$

1+$++
and

&z& y&�:d $r(A)(1+$)�:d $r(A)(1+'). (4.2)

Since x # E $(A), we obtain

A�B \z, (1+$) \1+
$

1+$++=B(z, 1+2$),

and hence z # E2$(A). If we recall formulae (4.1) and (4.2) we obtain a con-
tradiction to the fact that ' is arbitrary and : is fixed and strictly less than
one. K

The following lemma is an immediate consequence of the definition of }~ $.

Lemma 4.8. If Y is a normed linear space then }~ $Y (d )=}~ $Y� (d) for every
d�0.

The following remark proves that the different between d $r of
Theorem 4.7 and dr of Theorem 2.9 is essential.

Remark 4.9. Let Y be the space of Lemma 4.3 and consider x=(3, 1,
1, 1, 0, 0, ...) and y the null element of Y. We take A=B(0, 1) & B( y, 2) and
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G=[0]. Then E 0(A)=[x]. From Lemmas 4.3 and 4.8 we have that }~ $Y is
maximal and hence

rG(A)=2<r(A) }~ $Y \dist(E 0(A), G)
r(A) +=}~ $Y (dist(E 0(A), G))=4.

We finish this work by giving the final property of the incomplete
Lifschitz modulus.

Theorem 4.10. A normed linear space Y is a Smith�Ward space if and
only if }~ $Y (d )=d+1 for all positive d.

Proof. The direct implication is an immediate consequence of
Lemma 2.10 and Theorem 4.7. In order to prove the reverse we have that,
since Y is a Smith�Ward space, Y� is a Smith�Ward Banach space. There-
fore }~ Y� (d )=d+1 for all positive d. Recalling Lemma 4.6 we obtain that
}~ $Y� (d )=d+1 for all positive d. Now Lemma 4.8 leads to the conclusion.

K
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